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Central Limit Theorem

Linear Transformation of a RV

Suppose that X is a random variable and that a and b are constants. Then:

Ela+bX] =a+ bE[X]
Var (a + bX) = b*Var(X)

Sums of Random Variables

If Xy,Xo,...,X, are independent and identically distributed (iid) random
variables, then:

n

E [Z Xi] = Z E[X]

Var (i X,L> = Zn:VaY(XZ)

Means of Random Variables

Suppose X1, Xo, ..., X, are independent and identically distributed (iid) ran-
dom variables. Let X = % >, X; be their sample mean. Then:

E [X] = E[X|]
Var (X) = %Var(Xi)

Statement of the CLT

Suppose X7, Xs,..., X, are iid rv’s with population mean E[X;] = p and

variance Var(X;) = o2.

Then for “large n”, \/n(X — u) approximately follows the Normal(0, o2) distri-
bution.

As n — oo, this approximation becomes exact.



Example: Calculations

Let Xl, )(27 PN ,X40 be iid POiSSOIl(A) with A = 6.

We will form v/40(X —6) over 10,000 realizations and compare their distribution
to a Normal(0, 6) distribution.

> x <- replicate(n=1le4, expr=rpois(n=40, lambda=6),
+ simplify="matrix")

> x_bar <- apply(x, 2, mean)

> clt <- sqrt(40)*(x_bar - 6)

>

> df <- data.frame(clt=clt, x = seq(-18,18,length.out=1e4),
+ y = dnorm(seq(-18,18,length.out=1e4),

+ sd=sqrt(6)))

Example: Plot

> ggplot(data=df) +

+ geom_histogram(aes(x=clt, y=..density..), color="blue",
+ fill="lightgray", binwidth=0.75) +

+ geom_line(aes(x=x, y=y), size=1.5)
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Statistical Inference

Data Collection as a Probability

e Suppose data are collected in such a way that it is randomly observed
according to a probability distribution

o If that probability distribution can be parameterized, then it is possible
that the parameters describe key characteristics of the population of

interest
o Statistical inference reverse engineers this process to estimate the
unknown values of the parameters and express a measure of uncertainty

about these estimates

Example: Simple Random Sample

Individuals are uniformly and independently randomly sampled from a popula-

tion.

The measurements taken on these individuals are then modeled as random
variables, specifically random realizations from the complete population of



values.

Simple random samples form the basis of modern surveys.

Example: Randomized Controlled Trial
Individuals under study are randomly assigned to one of two or more available
treatments.

This induces randomization directly into the study and breaks the relationship
between the treatments and other variables that may be influencing the response
of interest.

This is the gold standard study design in clinical trials to assess the evidence
that a new drug works on a given disease.

Parameters and Statistics

e A parameter is a number that describes a population

— A parameter is often a fixed number
— We usually do not know its value

e A statistic is a number calculated from a sample of data
o A statistic is used to estimate a parameter

Sampling Distribution

The sampling distribution of a statistic is the probability disribution of
the statistic under repeated realizations of the data from the assumed data
generating probability distribution.

The sampling distribution is how we connect an observed statistic to the popula-
tion.

Example: Fair Coin?
Suppose I claim that a specific coin is fair, i.e., that it lands on heads or tails
with equal probability.
I flip it 20 times and it lands on heads 16 times.
1. My data is = 16 heads out of n = 20 flips.

2. My data generation model is X ~ Binomial(20, p).
3. I form the statistic p = 16/20 as an estimate of p.



Example (cont’d)

Let’s simulate 10,000 times what my estimate would look like if p = 0.5 and I
repeated the 20 coin flips over and over.

> x <- replicate(n=1le4, expr=rbinom(1l, size=20, prob=0.5))
> sim_p_hat <- x/20
> my_p_hat <- 16/20

What can I do with this information?
Example (cont’d)

Histogram of Sampling Distribution
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Central Dogma of Inference

probability
(sampling distribution)

—— “statistic”

POPULATION .
inference

(estimation,
Q / hypothesis testing)

Inference Goals and Strategies

Basic Idea
Data are collected in such a way that there exists a reasonable probability model
for this process that involves parameters informative about the population.

Common Goals:

1. Form point estimates the parameters
2. Quantify uncertainty on the estimates
3. Test hypotheses on the parameters

Normal Example

Suppose a simple random sample of n data points is collected so that the

following model of the data is reasonable: Xi, Xs,...,X,, are iid Normal(yu,
a?).

The goal is to do inference on pu, the population mean.



For simplicity, assume that ¢ is known (e.g., 0% = 1).

Point Estimate of p

There are a number of ways to form an estimate of u, but one that has several
justifications is the sample mean:

where x1, o, ...,x, are the observed data points.

Sampling Distribution of [

If we were to repeat this study over and over, how would /i behave?

p=X=

3=

n
Sox
=1

X ~ Normal(p, 0% /n)

How do we use this to quantify uncertainty and test hypotheses?

Pivotal Statistic

One very useful strategy is to work backwards from a pivotal statistic, which is
a statistic that does not depend on any unknown paramaters.

Example:

X—p
o/vn

Note that in general for a rv Y it is the case that (Y — E[Y])//Var(Y) has
population mean 0 and variance 1.

~ Normal(0, 1)

10



Confidence Intervals

Goal

Once we have a point estimate of a parameter, we would like a measure of its
uncertainty.

Given that we are working within a probabilistic framework, the natural language
of uncertainty is through probability statements.

We interpret this measure of uncertainty in terms of hypothetical repetitions of
the sampling scheme we used to collect the original data set.

Formulation

Confidence intervals take the form

(A= Cp i+ Cy)

where

Pr(p—Cp < p<p+Cy)

forms the “level” or coverage probability of the interval.

Interpretation
If we repeat the study many times, then the CI (i — Cy, i + C,,) will contain
the true value p with a long run frequency equal to Pr(p — Cy < i < pu+ C,).

A CI calculated on an observed data set is not intepreted as: “There is probability
Pr(p—Cy < i < pu+ C,) that p is in our calculated (i — Cp, i + C,,)” Why
not?

11



Density curve of X
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If Z ~ Normal(0,1), then Pr(—1.96 < Z < 1.96) = 0.95.
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Therefore, <[L — 1.96%, i+ 1.96%) forms a 95% confidence interval of p.
A Simulation

>mu <- 5

>n <- 20

> x <- replicate(10000, rnorm(n=n, mean=mu)) # 10000 studies
> m <- apply(x, 2, mean) # the estimate for each study

> ci <~ cbind(m - 1.96/sqrt(n), m + 1.96/sqrt(n))

> head(ci)

[,1] [,2]
[1,] 4.613983 5.490522
[2,] 4.718898 5.595437
[3,] 4.857944 5.734483
[4,] 4.697341 5.573880
[5,] 4.621864 5.498403
[6,] 4.494349 5.370888

> cover <- (mu > cil[,1]) & (mu < ci[,2])
> mean(cover)
[1] 0.9487

Normal(0, 1) Percentiles

Above we constructed a 95% CI. How do we construct (1-a)-level CIs?
Let z, be the a percentile of the Normal(0,1) distribution.
If Z ~ Normal(0,1), then

l1—a = PI‘(ZQ/Q <Z< Zlfa/Q)
= Pr(—|za/2l £ Z < |242])

> qnorm(0.025)
[1] -1.959964
> gnorm(0.975)
[1] 1.959964
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Commonly Used Percentiles

-«
d / ﬁ\
: \
. /
o™~
5 ] Zpos
© Zg,05
Ziess \ Zy.g75

- \
= e —
(=]

T T T T T T T

3 2 1 0 1 2 3

(1 — a)-Level CIs

If Z ~ Normal(0,1), then Pr(—|zq/2] < Z < |24/2]) =1 — a.

Repeating the steps from the 95% CI case, we get the following is a (1 —«)-Level
CI for pu:

~ [N o
(M - |Za/2|ﬁau + |Zo¢/2|\/ﬁ>

One-Sided ClIs

The CIs we have considered so far are “two-sided”. Sometimes we are also
interested in “one-sided” Cls.

If Z ~ Normal(0,1), then 1 —a =Pr(Z > —|z,|) and 1 —a = Pr(Z < |z,]). We
can use this fact along with the earlier derivations to show that the following
are valid Cls:

(1 — @)-level upper: (—oo,/l + |Z°‘|\jﬁ>

14



(1 — a)-level lower: <ﬂ - |za|%, oo>

Hypothesis Tests

Example: HT on Fairness of a Coin

Suppose I claim that a specific coin is fair, i.e., that it lands on heads or tails
with equal probability.

I flip it 20 times and it lands on heads 16 times.

1. My data is = 16 heads out of n = 20 flips.
2. My data generation model is X ~ Binomial(20, p).
3. I form the statistic p = 16/20 as an estimate of p.

More formally, I want to test the hypothesis: Hy:p=0.5vs. H; : p #0.5
under the model X ~ Binomial(20, p) based on the test statistic p = X/n.

Example (cont’d): Null Distribution

Let’s simulate 10,000 times what my estimate would look like if p = 0.5 and I
repeated the 20 coin flips over and over.

> x <- replicate(n=1le4, expr=rbinom(1l, size=20, prob=0.5))

> sim_p_hat <- x/20
> my_p_hat <- 16/20

The vector sim_p_hat contains 10,000 draws from the null distribution, i.e.,
the distribution of my test statstic p = X/n when Hy : p = 0.5 is true.

15



Histogram of Null Distribution Draws
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Example (cont’d): P-value

The deviation of the test statistic from the null hypothesis can be measured by
|p — 0.5].

Let’s compare our observed deviation |16/20 — 0.5] to the 10,000 simulated null
data sets. Specifically, let’s calculate the frequency by which these 10,000 cases
are as or more extreme than the observed test statistic.

> sum(abs(sim_p_hat-0.5) >= abs(my_p_hat-0.5))/1le4
[1] 0.0072

This quantity is called the p-value of the hypothesis test.

A Caveat

This example is a simplification of a more general framework for testing statistical
hypotheses.

Given the intuition provided by the example, let’s now formalize these ideas.

16



Definition

¢ A hypothesis test or significance test is a formal procedure for com-
paring observed data with a hypothesis whose truth we want to assess

e The results of a test are expressed in terms of a probability that measures
how well the data and the hypothesis agree

e The null hypothesis (Hy) is the statement being tested, typically the
status quo

¢ The alternative hypothesis (H;) is the complement of the null, and it
is often the “interesting” state

Return to Normal Example

Let’s return to our Normal example in order to demonstrate the framework.
Suppose a simple random sample of n data points is collected so that the
following model of the data is reasonable: X, Xs,..., X, are iid Normal(yu,
a?).

The goal is to do test a hypothesis on u, the population mean.

For simplicity, assume that ¢ is known (e.g., 02 = 1).

HTs on Parameter Values

Hypothesis tests are usually formulated in terms of values of parameters. For
example:

H()S‘LL:5

H12/1,7é5

Note that the choice of 5 here is arbitrary, for illustrative purposes only. In a
typical real world problem, the values that define the hypotheses will be clear
from the context.

Two-Sided vs. One-Sided HT

Hypothesis tests can be two-sided or one-sided:
Hy:p=5vs. Hy:pu#5 (two-sided)
Ho:p<5vs. Hy:p>5 (one-sided)

17



Hy:p>5vs. Hy:p <5 (one-sided)

Test Statistic

A test statistic is designed to quantify the evidence against the null hypothesis
in favor of the alternative. They are usually defined (and justified using math
theory) so that the larger the test statistic is, the more evidence there is.

For the Normal example and the two-sided hypothesis (Hg : p =5 vs. Hy : p #
5), here is our test statistic:

T — 5|
2] =

~o/vn

What would the test statistic be for the one-sided hypothesis tests?

Null Distribution (Two-Sided)

The null distribution is the sampling distribution of the test statistic when
Hyj is true.

We saw earlier that f/?/% ~ Normal(0, 1).
When Hj is true, then p = 5. So when Hy is true it follows that

X -5
7= i

and then probabiliy calculations on |Z| are straightforward. Note that Z is
pivotal when H is true!

~ Normal(0, 1)

Null Distribution (One-Sided)

When performing a one-sided hypothesis test, such as Hy : u < 5 vs. Hy : > 5,
the null distribution is typically calculated under the “least favorable” value,
which is the boundary value.

In this example it would be = 5 and we would again utilize the null distribution
X5

=——~N 1(0,1).
YN ormal(0,1)

18



P-values

The p-value is defined to be the probability that a test statistic from the null
distribution is as or more extreme than the observed statistic. In our Normal
example on the two-sided hypothesis test, the p-value is

Pr(|Z7] = |2])

where Z* ~ Normal(0,1) and |z| is the value of the test statistic calculated on
the data (so it is a fixed number once we observe the data).

Calling a Test “Significant”

A hypothesis test is called statistically significant — meaning we reject Hy
in favor of Hy; — if its p-value is sufficiently small.

Commonly used cut-offs are 0.01 or 0.05, although these are not always appro-
priate.

Applying a specific p-value cut-off to determine significance determines an error
rate, which we define next.

Types of Errors

There are two types of errors that can be committed when performing a
hypothesis test.

1. A Type I error or false positive is when a hypothesis test is called
signficant and the null hypothesis is actually true.

2. A Type II error or false negative is when a hypothesis test is not
called signficant and the alternative hypothesis is actually true.

Error Rates

e The Type I error rate or false positive rate is the probability of this
type of error given that Hy is true.

o If a hypothesis test is called significant when p-value < « then it has a
Type I error rate equal to a.

e The Type II error rate or false negative rate is the probability of
this type of error given that H; is true.

e The power of a hypothesis test is 1— Type II error rate.

Hypothesis tests are usually derived with a goal to control the Type I error rate
while maximizing the power.

19



CLT for Common Estimators

The Normal Example

We formulated both confidence intervals and hypothesis tests under the following
“example”:

Suppose a simple random sample of n data points is collected so that
the following model of the data is reasonable: X;, Xo,..., X,, are
iid Normal(u, o). The goal is to do inference on y, the population
mean. For simplicity, assume that o2 is known (e.g., 02 = 1).

There is a good reason why we did this.

Normal Pivotal Statistics

The random variable distributions we introduced in Week 6 all have parameter
estimators that can be standardized to yield a pivotal statistic with a Normal(0,1)
distribution.

For example, if X ~ Binomial(n,p) and p = X/n, then for large n it approxi-
mately holds that:
p—p

[ p(1—p)

We will cover these results next week, which will allow us to directlty leverage
the Normal case we worked out this week.

~ Normal(0, 1).

Bayesian Inference

Frequentist Probability

The inference framework we have covered so far uses a frequentist intepretation
of probability.

We made statements such as, “If we repeat this study over and over, the long
run frequency is such that...”

The Framework

Bayesian inference is based on a different interpretation of probability, that
probability is a measure of subjective belief.

20



A prior probability distribution is introduced for an unknown parameter,
which is a probability distribution on the unknown parameter that captures
your subjective belief about its possible values.

The posterior probability distributuon of the parameter is then calculated
using Bayes theorem once data are observed. Analogs of confidence intervals
and hypothesis tests can then be obtained through the posterior distribution.

An Example

Prior: P ~ Uniform(0,1)
Data generating distribution: X|P = p ~ Binomial(n, p)
Posterior (via Bayes Theorem):

Pr(X = z|P)Pr(P)
Pr(X =x)

Pr(P|X =z) =

Calculations

In the previous example, it is possible to analytically calculate the posterior
distribution. (In the example, it is a Beta distribution with parameters that
involve x.) However, this is often impossible.

Bayesian inference often involves complicated and intensive calculations to
numerically approximate the posterior probability distribution.

Use in Practice
Although the Bayesian inference framework has its roots in the subjective view

of probability, in modern times this philosophical aspect is often ignored or
unimportant.

Instead, Bayesian inference is used because it provides a flexible and sometimes
superior model for real world problems.

Extras

License

https://github.com/SML201/lectures/blob/master/LICENSE.md
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Source Code

https://github.com/SML201/lectures/tree/master/week7

Session Information

> sessionInfo()

R version 3.2.3 (2015-12-10)

Platform: x86_64-apple-darwinl3.4.0 (64-bit)
Running under: 0S X 10.11.3 (E1 Capitan)

locale:
[1] en_US.UTF-8/en_US.UTF-8/en_US.UTF-8/C/en_US.UTF-8/en_US.UTF-8

attached base packages:
[1] stats graphics grDevices utils datasets methods
[7] base

other attached packages:
[1] ggplot2_2.1.0 knitr_1.12.3 magrittr_1.5
[4] devtools_1.10.0

loaded via a namespace (and not attached):

[1] Rcpp_0.12.3 codetools_0.2-14 digest_0.6.9
[4] plyr_1.8.3 grid_3.2.3 gtable_0.2.0
[7] formatR_1.2.1 evaluate_0.8 scales_0.4.0
[10] stringi_1.0-1 rmarkdown_0.9.5 labeling 0.3
[13] tools_3.2.3 stringr_1.0.0 munsell_0.4.3
[16] yaml_2.1.13 colorspace_1.2-6 memoise_1.0.0

[19] htmltools_0.3
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