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CLT Revisited

Standardized RVs

Note that in general for a rv Y it is the case that

Y — E[Y]
Var(Y)

has population mean 0 and variance 1.

CLT for Standardized RVs

Suppose Xi, Xo,...,X,, are iid rv’s with population mean E[X;] = p and

variance Var(X;) = o2.

Then for “large n”,

X—p
o/vn

approximately follows the Normal(0, 1) distribution.

As n — oo, this approximation becomes exact.

Example: Standardized Poisson

Let X3, Xs,...,X40 be iid Poisson(\) with A = 6.
We will form

X6
V6/v/40

over 10,000 realizations and compare their distribution to a Normal(0, 1)
distribution.

x <- replicate(n=1e4, expr=rpois(n=40, lambda=6),
simplify="matrix")

X_bar <- apply(x, 2, mean)

clt_std <- (x_bar - 6)/(sqrt(6)/sqrt(40))

df <- data.frame(z=clt_std, x = seq(-3.5,3.5,length.out=1e4),
y = dnorm(seq(-3.5,3.5,length.out=1e4)))
# note that df$y are Normal(0,1) pdf wvalues

V + V V V V + V
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ggplot(data=df) +
geom_histogram(aes(x=z, y=..density..), color="blue",
fill="lightgray", binwidth=0.3) +

geom_line(aes(x=x, y=y), size=1.5)

0.4+ /h\
0.3
2
‘0
G 0.2-
Lo
0.1+
0.0
T T T T T
-4 -2 0 2 4
z

Approximate Pivotal Statistics

Normal Distribution, Known Variance

Last week we considered data modeled by X;, X, ..., X, iid Normal(u, o?)
where we assumed that o is known.
We derived (1 — a)-level confidence intervals and also hypothesis tests based on

the pivotal statistic:

X—p
~ N 1(0,1).
YN ormal(0, 1)




Wider Application

As it turns out, we can use these results for a wider range of distributions.
Those we earlier introduced have approximately pivotal Normal(0, 1) statistics.

They have the form:

estimator — parameter
Z = P ~ Normal(0, 1),
standard error

where “standard error” is what we call an estimator of the standard deviation
of the estimator.

Justification

The CLT from the previous section provides a justification for why these Z
statistics are approximately Normal(0, 1).

Some additional mathematics and assumptions must be detailed, but the basic
justification is through the CLT.

Summary of Statistics

Distribution
Estimator Std Err Z Statistic

S
=
[
|
S
2
S

Binomial(n,p) p = X/n

=3
s|7
S

A—p

S/vn

X

Normal(u,0?) i

A=A

VA/n

I
&l
= sk

Poisson(\) A

In all of these scenarios, Z is approximately Normal(0, 1) for large n.

Notes

e For the Normal and Poisson distributions, our model is X7, Xs,..., X,
iid from each respective distribution
o For the Binomial distribution, our model is X ~ Binomial(n, p)

e In the Normal model, S = Z’iﬁ# is the sample standard devia-

tion



e The above formulas were given in terms of the random variable probability
models; on observed data the same formulas are used except we observed
data lower case letters, e.g., replace X with T

Binomial

Approximate (1 — a)-level two-sided CI:

51 — b 51 — b
<ﬁ - |Zoz/2| \/ uaﬁ+ |Za/2| \/ p(p)>
n n

Hypothesis test, Hy : p = pg vs Hy : p # po:

= _p—Po_ and p-value = Pr(|Z*| > |z|)
p(1—p)

n

where Z* is a Normal(0, 1) random variable.

Normal

Approximate (1 — a)-level two-sided CI:

N s s
(M - |Za/2|ﬁuu + |Za/2|\/ﬁ>

Hypothesis test, Hy : = po vs Hy : p # po:

Z:ﬂ*uo
s/\/n

where Z* is a Normal(0, 1) random variable.

and p-value = Pr(|Z*| > |2|)

Poisson

Approximate (1 — «)-level two-sided CI:

. PR A
A— |Za/2|\/;a A+ |Z(x/2|\/;

Hypothesis test, Hyp : A = Ao vs Hy : A # Ao:



— o

and p-value = Pr(|Z*| > |z|)

e

where Z* is a Normal(0, 1) random variable.

One-Sided CIs and HTs

The one-sided versions of these approximate confidence intervals and hypothesis
tests work analogously.

The procedures shown for the Normal(u, 02) case with known o2 from last week
are utilzied with the appropriate subsitutions as in the above examples.

Comment

This gives you a framework to do many common inference tasks “by hand” (i.e.,
calculating each component directly in R).

However, R uses a much more comprehensive set of theory, methods, and
computational approximations.

Therefore, this “large n, z-statistic” framework serves as a guide so that you
know approximately what R does, but we will learn specific functions that are
tailored for each data type.

Two-Sample Inference

Comparing Two Populations

So far we have concentrated on analyzing n observations from a single population.
However, suppose that we want to do inference to compare two populations?

The framework we have described so far is easily extended to accommodate
this.

Two RVs

If X and Y are independent rv’s then:

E[X — Y] = E[X] — E[Y]

Var(X —Y) = Var(X) + Var(Y)



Two Sample Means

Let X1, Xo,...,X,, beiid rv’s with population mean p; and population variance

o2,

Let Y1,Y5,...,Y,, beiid rv’s with population mean po and population variance
2

05.

Assume that the two sets of rv’s are independent. Then when the CLT applies
to each set of rv’s, it approximately holds that:

XY~ (1~ po)

~ Normal(0, 1)

Same Rationale
Just as we formed Z-statistics earlier of the form

estimator — parameter .
= P ~ Normal(0, 1),

standard error

we can do the analogous thing in the two-sample case, except now we’re
considering differences.

Poisson

Let X1, Xs,...,X,, beiid Poisson(A;) and Y7,Y5,...,Y,, be iid Poisson(Az).

We have \; = X and Ao = Y. For large ny and no, it approximately holds that:

A=A — (A= Ao)

JA g A
n1+n2

Normal (Unequal Variances)

~ Normal(0, 1).

Let Xl,XQ,...,an be iid Normal(,ul,of) and Y17Y27...,Yn2 be iid
Normal(jz, 03).

We have fi; = X and ji = Y. For large n; and ng, it approximately holds that:

fin — fizg — (g1 — p2)
52 52
e

n

~ Normal(0, 1).



Normal (Equal Variances)

Let Xp,Xs,...,X,, be iid Normal(u;,0?) and Yi,Ys,...,Y,, be iid

Normal(jz, 0?).

We have fi; = X and ji = Y. For large n; and ng, it approximately holds that:
fir — iz — (1 — pi2)

52 S2
ni nz

~ Normal(0, 1)

where

iy (Xi = X)2+ 370, (Vi — V)2

5% =
7L1+1’L2—2

Binomial

Let X ~ Binomial(ny,p1) and Y ~ Binomial(nz, p2).

We have p; = X/ny and pa = Y/ng. For large ny and nso, it approximately
holds that:

P1— P2 — (p1 — p2)
\/ﬁl(l—ﬁl) 4 D2(1=p2)

ni n2

~ Normal(0, 1).

Example: Binomial CI

A 95% CI for the difference p; — p2 can be obtained by unfolding the above
pivotal statistic:

117 I
(ﬁ1—]52)—1.96\/p1( p1)+p2( 202)7

ni N2

15 ——
(]31—152)4-1.96\/])1( P1) +p2( P2)
ny ngy
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Example: Binomial HT

Suppose we wish to test Hy : p1 = ps vs Hy : p1 # po.

First form the z-statistic:

L P1— D2
p1(1=p1) | pa(l=ps)
\/m nlpl 4 D2 n2p2
Now, calculate the p-value:
Pr(|Z7| = |z)

where Z* is a Normal(0,1) random variable.

Z Statistic Inference in R

BSDA Package

> install.packages("BSDA")

> library(BSDA)

> str(z.test)

function (x, y = NULL, alternative = "two.sided", mu = O,
sigma.x = NULL, sigma.y = NULL, conf.level = 0.95)

Example: Poisson
Apply z.testO:

> set.seed(210)

> n <- 40

> lam <- 14

> x <- rpois(n=n, lambda=lam)

> lam.hat <- mean(x)

> stddev <- sqrt(lam.hat)

> z.test(x=x, sigma.x=stddev, mu=lam)

One-sample z-Test

11



data: x
z = 0.41885, p-value = 0.6753
alternative hypothesis: true mean is not equal to 14
95 percent confidence interval:
13.08016 15.41984
sample estimates:
mean of x
14.25

By Hand Calculations

Confidence interval:

> lam.hat <- mean(x)

> lam.hat

[1] 14.25

> stderr <- sqrt(lam.hat)/sqrt(n)

> lam.hat - abs(qnorm(0.025)) * stderr # lower bound
[1] 13.08016

> lam.hat + abs(qnorm(0.025)) * stderr # upper bound
[1] 15.41984

Hypothesis test:

> z <- (lam.hat - lam)/stderr

> z # test statistic

[1] 0.4188539

> 2 x pnorm(-abs(z)) # two-sided p-value
[1] 0.6753229

Exercise

Figure out how to get the z.test () function to work on Binomial data.

Hint: Are n iid observations from the Binomial(1,p) distribution equivalent to
one observation from the Binomial(n,p)?

The t Distribution

Normal Distribution, Unknown Variance

Suppose data a sample of n data points is modeled by Xi, Xo,..., X, iid
Normal(y, 0?) where o2 is unknown.

12



T (Xi—X)?
We still have a pivotal statistic. Recall that S = Zﬂffl) is the sample
standard deviation.

The statistic o
X—p
S/v/n

has a t,_; distribution, a ¢-distribution with n — 1 degrees of freedom.

t vs Normal

0.4-
0.3-
distribution
— === Normal
X
=02 — t, df=30
1, df=4

0.1-

0.0-

t Percentiles
We calculated percentiles of the Normal(0,1) distribution (e.g., z,). We can do
the analogous calculation with the t distribution.

Let t, be the a percentile of the ¢ distribution. Examples:
> qt(0.025, df=4) # alpha = 0.025
[1]1 -2.776445

> qt(0.05, df=4)
[1] -2.131847

13



> qt(0.95, df=4)
[1] 2.131847
> qt(0.975, df=4)
[1] 2.776445

Confidence Intervals

Here is a (1 — a)-level CI for y using this distribution:

S S
0— |t 5. + s
(/u‘ | a/Q‘\/ﬁuu’+| a/Q\/ﬁ) ’

where as before i = 7. This produces a wider CI than the z statistic analogue.

Hypothesis Tests

Suppose we want to test Ho : pt = po vs Hy @ u # po where pg is a known, given
number.

The t-statistic is

t = I —S Ho
n
with p-value
Pr(|T7| = [t])

where T* ~ t,,_1.

Two-Sample Inference
In the Two-Sample Inference section we presented pivotal statistics for the
two-sample case with unequal and equal variances.

When there are equal variances, the pivotal statistic follows a t,, 4n,—2 distri-
bution.

When there are unequal variances, the pivotal statistic follows a ¢ distribution
where the degrees of freedom comes from a more complex formula, which R
calculates for us.

14



When Is t Utilized?

e The t distribution and its corresponding CI’s and HT’s are utilized when
the data are Normal (or approximately Normal) and n is small

e Small typically means that n < 30

o In this case the inference based on the ¢ distribution will be more accurate
e When n > 30, there is very little difference between using t-statistics and
z-statistics

Inference in R

Functions in R

R has the following functions for doing inference on the distributions we’ve
considered.

e Normal: t.test()
o Binomial: binomial.test() or prop.test()
e Poisson: poisson.test()

These perform one-sample and two-sample hypothesis testing and confidence
interval construction for both the one-sided and two-sided cases.

About These Functions

e We covered a convenient, unified framework that allows us to better
understand how confidence intervals and hypothesis testing are performed

o However, this framework requires large sample sizes and is not necessarily
the best method to apply in all circumstances

About These Functions (cont’d)

e The above R functions are versatile functions for analyzing Normal, Bino-
mial, and Poisson distributed data (or approximations thereof) that use
much broader theory and methods than we will cover in this course

e The arguments these functions take and the ouput of the functions are in
line with the framework that we have covered

15



Inference on Normal Data in R

Setup

library("dplyr")
library("ggplot2")
theme_set (theme_bw())
library("broom")

vV V V V

“Pavis” Data Set

> library("car")

Attaching package: 'car'
The following objects are masked from 'package:BSDA':

Vocab, Wool
> data("Davis")

> htwt <- tbl_df(Davis)
> htwt
Source: local data frame [200 x 5]

sex weight height repwt repht
(fctr) (int) (int) (int) (int)

1 M 77 182 7 180
2 F 58 161 51 159
3 F 53 161 54 158
4 M 68 177 70 175
5 F 59 157 59 155
6 M 76 170 76 165
7 M 76 167 7 165
8 M 69 186 73 180
9 M 71 178 71 175
10 M 65 171 64 170

Height vs Weight

16



> ggplot (htwt) +
+ geom_point(aes(x=height, y=weight, color=sex), size=2, alpha=0.5) +
+ scale_colour_manual (values=c("red", "blue"))

o

160

120 °
- sex
=
=) o F
(]
= e M

80-

[}
40-
50 100 150 200
height

An Error?

> which(htwt$height < 100)

[1] 12

> htwt[12,]

Source: local data frame [1 x 5]

sex weight height repwt repht
(fctr) (int) (int) (int) (int)
1 F 166 57 56 163

> htwt[12,c(2,3)] <- htwt[12,c(3,2)]

17



Updated Height vs Weight

> ggplot (htwt) +

+ geom_point(aes(x=height, y=weight, color=sex), size=2, alpha=0.5) +

+ scale_color_manual(values=c("red", "blue"))
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°
o 8
404 S
150 160 170 180 190
height

Density Plots of Height

> ggplot (htwt) +
+ geom_density(aes(x=height, color=sex), size=1.5) +
+ scale_color_manual(values=c("red", "blue"))
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Density Plots of Weight

> ggplot (htwt) +
+

geom_density(aes(x=weight, color=sex), size=1.5) +
+

scale_color_manual(values=c("red", "blue"))

19
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t.test () Function

From the help file. ..

Usage
t.test(x, ...)

## Default S3 method:
t.test(x, y = NULL,

alternative = c("two.sided", "less", "greater"),
mu = O, paired = FALSE, var.equal = FALSE,

conf.level = 0.95, ...)

## S3 method for class 'formula'
t.test(formula, data, subset, na.action, ...)

20
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Two-Sided Test of Male Height

> m_ht <- htwt %>} filter(sex=="M") %>} select(height)
> testresult <- t.test(x = m_ht$height, mu=177)

> class(testresult)

[1] "htest"
> is.list(testresult)
[1] TRUE

Output of t.test()

> names (testresult)

[1] "statistic"  "parameter"  ‘"p.value" "conf.int"
[6] "estimate" "null.value" "alternative" "method"
[9] "data.name"

> testresult

One Sample t-test

data: m_ht$height
t = 1.473, df = 87, p-value = 0.1443
alternative hypothesis: true mean is not equal to 177
95 percent confidence interval:
176.6467 179.3760
sample estimates:
mean of x
178.0114

Tidying the Output

> library(broom)
> tidy(testresult)

estimate statistic p.value parameter conf.low conf.high
1 178.0114 1.473043 0.1443482 87 176.6467  179.376

Two-Sided Test of Female Height

21



> f_ht <- htwt %>} filter(sex=="F") >} select(height)
> t.test(x = f_ht$height, mu = 164)

One Sample t-test

data: f_ht$height
t = 1.3358, df = 111, p-value = 0.1844
alternative hypothesis: true mean is not equal to 164
95 percent confidence interval:
163.6547 165.7739
sample estimates:
mean of x
164.7143

Difference of Two Means

> t.test(x = m_ht$height, y = f_ht$height)
Welch Two Sample t-test

data: m_ht$height and f_ht$height
t = 15.28, df = 174.29, p-value < 2.2e-16
alternative hypothesis: true difference in means is not equal to O
95 percent confidence interval:
11.57949 15.01467
sample estimates:
mean of x mean of y
178.0114 164.7143

Test with Equal Variances
> htwt %>% group_by(sex) %>% summarize(sd(height))

Source: local data frame [2 x 2]

sex sd(height)

(fctr) (dbl)
1 F 5.659129
2 M  6.440701
> t.test(x = m_ht$height, y = f_ht$height, var.equal = TRUE)

Two Sample t-test

22



data: m_ht$height and f_ht$height
t = 15.519, df = 198, p-value < 2.2e-16
alternative hypothesis: true difference in means is not equal to O
95 percent confidence interval:
11.60735 14.98680
sample estimates:
mean of x mean of y
178.0114 164.7143

Paired Sample Test (v. 1)

First take the difference between the paired observations. Then apply the
one-sample t-test.

> htwt <- htwt %>/ mutate(diffwt = (weight - repwt),
+ diffht = (height - repht))
> t.test(x = htwt$diffwt) ¥>% tidy(O
estimate statistic p.value parameter conf.low

1 0.005464481 0.0319381 0.9745564 182 -0.3321223
conf.high
1 0.3430513
> t.test(x = htwt$diffht) ¥>% tidy(O
estimate statistic p.value parameter conf.low conf.high
1 2.076503 13.52629 2.636736e-29 182 1.773603 2.379403

Paired Sample Test (v. 2)

Enter each sample into the t.test () function, but use the paired=TRUE argu-
ment. This is operationally equivalent to the previous version.

> t.test(x=htwt$weight, y=htwt$repwt, paired=TRUE) %>} tidy()
estimate statistic p.value parameter conf.low

1 0.005464481 0.0319381 0.9745564 182 -0.3321223
conf.high

1 0.3430513

> t.test(x=htwt$height, y=htwt$repht, paired=TRUE) %>} tidy()
estimate statistic p.value parameter conf.low conf.high

1 2.076503 13.52629 2.636736e-29 182 1.773603 2.379403

> htwt %>} select(height, repht) %> na.omit() %>%
+  summarize(mean(height), mean(repht))
Source: local data frame [1 x 2]

mean(height) mean(repht)

23



(dpl) (dbl)
1 170.5738 168.4973

Inference on Binomial Data in R

The Coin Flip Example

I flip it 20 times and it lands on heads 16 times.

1. My data is = 16 heads out of n = 20 flips.
2. My data generation model is X ~ Binomial(20, p).
3. I form the statistic p = 16/20 as an estimate of p.

Let’s do hypothesis testing and confidence interval construction on these data.

binom.test ()

> str(binom.test)

function (x, n, p = 0.5, alternative = c("two.sided",
"less", "greater"), conf.level = 0.95)

> binom.test(x=16, n=20, p = 0.5)

Exact binomial test

data: 16 and 20
number of successes = 16, number of trials = 20,
p-value = 0.01182
alternative hypothesis: true probability of success is not equal to 0.5
95 percent confidence interval:
0.563386 0.942666
sample estimates:
probability of success
0.8

alternative = '"greater"

Tests Hy : p < 0.5 vs. Hy : p > 0.5.

24



> binom.test(x=16, n=20, p = 0.5, alternative='"greater")
Exact binomial test

data: 16 and 20
number of successes = 16, number of trials = 20,
p-value = 0.005909
alternative hypothesis: true probability of success is greater than 0.5
95 percent confidence interval:
0.5989719 1.0000000
sample estimates:
probability of success
0.8

alternative = "less"

Tests Hy : p > 0.5 vs. H; : p < 0.5.

> binom.test(x=16, n=20, p = 0.5, alternative="less")
Exact binomial test

data: 16 and 20
number of successes = 16, number of trials = 20,
p-value = 0.9987
alternative hypothesis: true probability of success is less than 0.5
95 percent confidence interval:
0.0000000 0.9286461
sample estimates:
probability of success
0.8

prop.test()

This is a “large n” inference method that is very similar to our z-statistic
approach.

> str(prop.test)

function (x, n, p = NULL, alternative = c("two.sided",
"less", "greater"), conf.level = 0.95, correct = TRUE)

> prop.test(x=16, n=20, p=0.5)

1-sample proportions test with continuity correction

25



data: 16 out of 20, null probability 0.5
X-squared = 6.05, df = 1, p-value = 0.01391
alternative hypothesis: true p is not equal to 0.5
95 percent confidence interval:

0.5573138 0.9338938

sample estimates:

p
0.8

An Observation

> p <- binom.test(x=16, n=20, p = 0.5)$p.value
> binom.test(x=16, n=20, p = 0.5, conf.level=(1-p))

Exact binomial test

data: 16 and 20
number of successes = 16, number of trials = 20,
p-value = 0.01182
alternative hypothesis: true probability of success is not equal to 0.5
98.81821 percent confidence interval:
0.5000000 0.9625097
sample estimates:
probability of success
0.8

Exercise: Figure out what happened here.

OIS Exercise 6.10

The way a question is phrased can influence a person’s response. For example,
Pew Research Center conducted a survey with the following question:

“As you may know, by 2014 nearly all Americans will be required to have health
insurance. [People who do not buy insurance will pay a penalty] while [People
who cannot afford it will receive financial help from the government]. Do you
approve or disapprove of this policy?”

For each randomly sampled respondent, the statements in brackets were ran-
domized: either they were kept in the order given above, or the two statements
were reversed.
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The Data

Table 6.2 shows the results of this experiment, reproduced below.

2nd Sample Approve Disapprove Other
Statement Size Law Law
“people who 771 47 49 3

cannot afford

it will receive

financial help

from the

government”

“people who 732 34 63 3
do not buy it

will pay a

penalty”

Inference on the Difference

Create and interpret a 90% confidence interval of the difference in approval.
Also perform a hyppthesis test that the approval rates are equal.

> x <- round(c(0.47*771, 0.34*732))
> n <- round(c(771%0.97, 732*%0.97))
> prop.test(x=x, n=n, conf.level=0.90)

2-sample test for equality of proportions with
continuity correction

data: x out of n
X-squared = 26.023, df = 1, p-value = 3.374e-07
alternative hypothesis: two.sided
90 percent confidence interval:
0.08979649 0.17670950
sample estimates:
prop 1 prop 2
0.4839572 0.3507042

OIS 90% CI

The book OIS does a “by hand” calculation using the z-statistics and comes up
with a similar answer (but not identical).
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pl.hat <- 0.47

nl <- 771

p2.hat <- 0.34

n2 <- 732

stderr <- sqrt(pl.hat*(1-pl.hat)/nl + p2.hat*(1-p2.hat)/n2)

# the 907 CI
(pl.hat - p2.hat) + c(-1,1)*abs(qnorm(0.05))*stderr
[1] 0.08872616 0.17127384

V V V V V V VYV

Inference on Poisson Data in R

poisson.test()

> str(poisson.test)
function (x, T =1, r = 1, alternative = c("two.sided",
"less", "greater"), conf.level = 0.95)

From the help:

Arguments

X number of events. A vector of length one or two.

T time base for event count. A vector of length one or two.
r hypothesized rate or rate ratio

alternative indicates the alternative hypothesis and must be one of
"two.sided", "greater" or "less". You can specify just the initial letter.

conf.level confidence level for the returned confidence interval.

Example: RNA-Seq

RNA-Seq gene expression was measured for p53 lung tissue in 12 healthy
individuals and 14 individuals with lung cancer.

The counts were given as follows.

Healthy: 82 64 66 88 65 81 85 87 60 79 80 72

Cancer: 59 50 60 60 78 69 70 67 72 66 66 68 54 62
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It is hypothesized that pb3 expression is higher in healthy individuals. Test this
hypothesis, and form a 99% CIL

H12>\17é)\2

Vv

healthy <- c(82, 64, 66, 88, 65, 81, 85, 87, 60, 79, 80, 72)
cancer <- c(59, 50, 60, 60, 78, 69, 70, 67, 72, 66, 66, 68,
+ 54, 62)

\'4

> poisson.test(x=c(sum(healthy), sum(cancer)), T=c(12,14),
+ conf.level=0.99)

Comparison of Poisson rates

data: c(sum(healthy), sum(cancer)) time base: c(12, 14)
countl = 909, expected countl = 835.38, p-value =
0.0005739
alternative hypothesis: true rate ratio is not equal to 1
99 percent confidence interval:

1.041626 1.330051
sample estimates:
rate ratio

1.177026

Hli)\1<)\2

> poisson.test(x=c(sum(healthy), sum(cancer)), T=c(12,14),
+ alternative="less", conf.level=0.99)

Comparison of Poisson rates

data: c(sum(healthy), sum(cancer)) time base: c(12, 14)
countl = 909, expected countl = 835.38, p-value =
0.9998
alternative hypothesis: true rate ratio is less than 1
99 percent confidence interval:
0.000000 1.314529
sample estimates:
rate ratio

1.177026
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Hi: > X
> poisson.test(x=c(sum(healthy), sum(cancer)), T=c(12,14),
+ alternative='"greater", conf.level=0.99)
Comparison of Poisson rates

data: c(sum(healthy), sum(cancer)) time base: c(12, 14)
countl = 909, expected countl = 835.38, p-value =
0.0002881
alternative hypothesis: true rate ratio is greater than 1
99 percent confidence interval:

1.053921 Inf
sample estimates:
rate ratio

1.177026

Question

Which analysis is the more informative and scientifically correct one, and why?

Extras

License

https://github.com/SML201/lectures/blob/master /LICENSE.md

Source Code

https://github.com/SML201 /lectures/tree/master /week8

Session Information

> sessionInfo()

R version 3.2.3 (2015-12-10)

Platform: x86_64-apple-darwinl3.4.0 (64-bit)
Running under: 0S X 10.11.3 (E1l Capitan)

locale:
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[1] en_US.UTF-8/en_US.UTF-8/en_US.UTF-8/C/en_US.UTF-8/en_US.UTF-8

attached base packages:
[1] stats graphics grDevices utils datasets methods
[7] base

other attached packages:
[1] car_2.1-1 broom_0.4.0 dplyr_0.4.3
[4] BSDA_1.01 lattice_0.20-33 e1071_1.6-7
[7] ggplot2_2.1.0 knitr_1.12.3 magrittr_1.5
[10] devtools_1.10.0

loaded via a namespace (and not attached):

[1] Rcpp_0.12.3 nloptr_1.0.4 formatR_1.2.1
[4] plyr_1.8.3 highr 0.5.1 class_7.3-14
[7] tools_3.2.3 lmed_1.1-11 digest_0.6.9
[10] evaluate_0.8 memoise_1.0.0 gtable_0.2.0
[13] nlme 3.1-125 mgev_1.8-11 Matrix_1.2-3
[16] psych_1.5.8 DBI_0.3.1 yaml_2.1.13
[19] parallel_3.2.3 SparseM_1.7 stringr_1.0.0
[22] MatrixModels_0.4-1 grid_3.2.3 nnet_7.3-12
[25] R6_2.1.2 rmarkdown_0.9.5 minga_1.2.4
[28] reshape2_1.4.1 tidyr_0.4.1 splines_3.2.3
[31] scales_0.4.0 codetools_0.2-14  htmltools_0.3
[34] MASS_7.3-45 assertthat_0.1 pbkrtest_0.4-6
[37] mnormt_1.5-3 colorspace_1.2-6 quantreg 5.21
[40] labeling 0.3 stringi_1.0-1 lazyeval_0.1.10

[43] munsell _0.4.3
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