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Inference on Binomial Data in R

OIS Exercise 6.10

The way a question is phrased can influence a person’s response. For example,
Pew Research Center conducted a survey with the following question:

“As you may know, by 2014 nearly all Americans will be required to have health
insurance. [People who do not buy insurance will pay a penalty] while [People
who cannot afford it will receive financial help from the government]. Do you
approve or disapprove of this policy?”

For each randomly sampled respondent, the statements in brackets were ran-
domized: either they were kept in the order given above, or the two statements
were reversed.

The Data

Table 6.2 shows the results of this experiment, reproduced below.



2nd Sample % Approve % Disapprove %
Statement Size Law Law Other

“people who 771 47 49 3
cannot afford

it will receive

financial help

from the

government”

“people who 732 34 63 3
do not buy it

will pay a

penalty”

Inference on the Difference

Create and interpret a 90% confidence interval of the difference in approval.
Also perform a hyppthesis test that the approval rates are equal.

> x <- round(c(0.47x771, 0.34%*732))
> n <- round(c(771%0.97, 732*%0.97))
> prop.test(x=x, n=n, conf.level=0.90)

2-sample test for equality of proportions with
continuity correction

data: x out of n
X-squared = 26.023, df = 1, p-value = 3.374e-07
alternative hypothesis: two.sided
90 percent confidence interval:
0.08979649 0.17670950
sample estimates:
prop 1 prop 2
0.4839572 0.3507042

OIS 90% CI

The book OIS does a “by hand” calculation using the z-statistics and comes up
with a similar answer (but not identical).

> pl.hat <- 0.47

> nl <= 771
> p2.hat <- 0.34
> n2 <- 732



stderr <- sqrt(pl.hat*(1-pl.hat)/nl + p2.hat*(1-p2.hat)/n2)

# the 907 CI
(pl.hat - p2.hat) + c(-1,1)*abs(qnorm(0.05))*stderr
1] 0.08872616 0.17127384

— V V V V

Inference on Poisson Data in R

poisson.test()

> str(poisson.test)
function (x, T =1, r = 1, alternative = c("two.sided",
"less", "greater"), conf.level = 0.95)

From the help:

Arguments

X number of events. A vector of length one or two.

T time base for event count. A vector of length one or two.
r hypothesized rate or rate ratio

alternative indicates the alternative hypothesis and must be one of
"two.sided", "greater" or "less". You can specify just the initial letter.

conf.level confidence level for the returned confidence interval.

Example: RNA-Seq

RNA-Seq gene expression was measured for p53 lung tissue in 12 healthy
individuals and 14 individuals with lung cancer.

The counts were given as follows.
Healthy: 82 64 66 88 65 81 85 87 60 79 80 72
Cancer: 59 50 60 60 78 69 70 67 72 66 66 68 54 62

It is hypothesized that p53 expression is higher in healthy individuals. Test this
hypothesis, and form a 99% CI.
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healthy <- c(82, 64, 66, 88, 65, 81, 85, 87, 60, 79, 80, 72)
cancer <- c(59, 50, 60, 60, 78, 69, 70, 67, 72, 66, 66, 68,
+ 54, 62)

Vv

\4

poisson.test(x=c(sum(healthy), sum(cancer)), T=c(12,14),
+ conf.level=0.99)

Comparison of Poisson rates

data: c(sum(healthy), sum(cancer)) time base: c(12, 14)
countl = 909, expected countl = 835.38, p-value =
0.0005739
alternative hypothesis: true rate ratio is not equal to 1
99 percent confidence interval:

1.041626 1.330051
sample estimates:
rate ratio

1.177026

Hli/\1<)\2

> poisson.test(x=c(sum(healthy), sum(cancer)), T=c(12,14),
+ alternative="less", conf.level=0.99)

Comparison of Poisson rates

data: c(sum(healthy), sum(cancer)) time base: c(12, 14)
countl = 909, expected countl = 835.38, p-value =
0.9998
alternative hypothesis: true rate ratio is less than 1
99 percent confidence interval:
0.000000 1.314529
sample estimates:
rate ratio

1.177026

Hi M > X\



> poisson.test(x=c(sum(healthy), sum(cancer)), T=c(12,14),
+ alternative="greater", conf.level=0.99)

Comparison of Poisson rates

data: c(sum(healthy), sum(cancer)) time base: c(12, 14)
countl = 909, expected countl = 835.38, p-value =
0.0002881
alternative hypothesis: true rate ratio is greater than 1
99 percent confidence interval:

1.053921 Inf
sample estimates:
rate ratio

1.177026

Question

Which analysis is the more informative and scientifically correct one, and why?

Modeling Relationships Among Variables

Rationale

One of the most important goals when analyzing data is to understand how
variables relate to one another. This may include:

e Characterizing how variables covary

e Measuring and identifying associations between variables
o Explaining the variation of one variable in terms of others
Predicting the outcome of a variable in terms of others

Strategies

We will consider both categorical and quantitative variables to achieve these
goals. Over the next few weeks we will study:

e Analyzing two categorical variables

e Analyzing two quantitative variables

o Least squares linear regression to characterize variation of a quantitative
variable in terms of other variables



o Logistic regression to characterize the probability distribution of a di-
chotomous variable in terms of other variables

o Predicting future values of a given variable based on measured values of
other variables

Two Categorical Variables

Survey Data

> library("MASS")

> data("survey", package="MASS")
> survey <- tbl_df (survey)

> head(survey)

Source: local data frame [6 x 12]

Sex Wr.Hnd NW.Hnd W.Hnd Fold Pulse Clap Exer
(fctr) (dbl) (dbl) (fctr) (fctr) (int) (fctr) (fctr)
1 Female 18.5 18.0 Right R on L 92 Left Some

2 Male 19.5 20.5 Left RonL 104 Left None
3 Male 18.0 13.3 Right L on R 87 Neither None
4 Male 18.8 18.9 Right R on L NA Neither None
5 Male 20.0 20.0 Right Neither 35 Right  Some
6 Female 18.0 17.7 Right L on R 64 Right  Some

Variables not shown: Smoke (fctr), Height (dbl), M.I (fctr),
Age (dbl)

2 x 2 Table

A contingency table:

> tbl = table(survey$Sex, survey$Ww.Hnd)

> tbl
Left Right
Female 7 110
Male 10 108

Let’s test the null hypothesis that sex and writing hand are independent vs. the
alternative hypothesis that they are dependent.
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120+

90 -

W.Hnd

60 -

count

30

T T
Female Male
Sex

Pearson’s Chi-Squared Test

> str(chisq.test)

function (x, y = NULL, correct = TRUE, p = rep(1/length(x),
length(x)), rescale.p = FALSE, simulate.p.value = FALSE,
B = 2000)

> chisq.test(tbl)

Pearson's Chi-squared test with Yates' continuity
correction

data: tbl
X-squared = 0.23563, df = 1, p-value = 0.6274



Chi-Squared Distribution

A x? distribution with d degrees of freedom is equivalent to the sum of d
independent Normal(0, 1) random variables.

o~ 22 224+ 72

where 71, Zs, ..., Zy are iid Normal(0, 1).

Chi-Squared PDFs

0.5-
0.4+
0.3
Distribution
x — Chir2 df=2
— Chi"2 df=3
0.2
0.1
0.0
0 5 10 15
X

Expected Counts

Observed counts:

> tbl
Left Right
Female 7 110
Male 10 108

10



Expected (under Hy) counts:

n <- sum(tbl)

p <- sum(tbl[1,])/n # freq Female

q <- sum(tbl[,1]1)/n # freq Left

expected <- n * matrix(c(p*q, (1-p)*q, px(1-q), (1-p)*(1-q)),
nrow=2)

vV + V V Vv VvV

expected

[,1] [,2]
[1,] 8.46383 108.5362
[2,] 8.53617 109.4638

Chi-Squared Statistic

The chi-squared statistic is calculated as

) O - E)?
oy 0D

where O is the observed count, F is the expected count, and the sum is taken
over all cells in the table.

Calculate the Statistic

> X2 <- sum((tbl - expected)”2 / expected)

> X2

[1] 0.5435149

>

> chisq.test(tbl, correct=FALSE)$statistic # equals X2
X-squared

0.5435149

> chisq.test(tbl)$statistic # with continuity correction
X-squared

0.2356302

Calculate the P-value

The null distribution of X2 is a x2 distribution with d degrees of freedom. We
calculate d by d = (r — 1)(c — 1) where r is the number of rows and c is the
number of columns.
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> 1-pchisq(X2, df=1)

[1] 0.4609797

>

> chisq.test(tbl, correct=FALSE)$p.value
[1] 0.4609797

Derivation

The theoretical derivation of this test is beyond the scope of this course.

However, it is worth noting that it is related to the Z-statistic approximation
from last week:

estimator — parameter
Z = P ~ Normal(0, 1).
standard error

Guidelines for Practice
e The total number of observations should be “large” so that ...

e The expected number of counts per cell should be 10 or greater
e The observed number of counts per cell should be 5 or greater

When these are violated, continuity corrections and simulation based p-values
can be used... or other tests can be used such as Fisher’s Exact Test — see
fisher.test().

Clapping and Writing Hand

> tbl = table(survey$Clap, survey$W.Hnd)

> tbl
Left Right
Left 9 29
Neither 5 45
Right 4 143

Note that now one of the categorical variables takes three values.

Also note the existence of low cell counts.

12



Chi-Squared Test Via Simulation

> chisq.test(tbl)
Warning in chisq.test(tbl): Chi-squared approximation may be
incorrect

Pearson's Chi-squared test

data: tbl
X-squared = 19.2562, df = 2, p-value = 6.598e-05

We address this warning by simulating tables from the null hypothesis.
> chisq.test(tbl, simulate.p.value = TRUE, B=10000)

Pearson's Chi-squared test with simulated p-value
(based on 10000 replicates)

data: tbl
X-squared = 19.252, df = NA, p-value = 9.999e-05

Exercise Vs. Writing Hand
> tbl = table(survey$Exer, survey$W.Hnd)
> tbl
Left Right
Freq 7 107
None 3 21
Some 8 90

> chisq.test(tbl, simulate.p.value = TRUE, B=10000)

Pearson's Chi-squared test with simulated p-value
(based on 10000 replicates)

data: tbl
X-squared = 1.2065, df = NA, p-value = 0.5532

13



Smoking Vs. Exercise

> tbl = table(survey$Smoke, survey$Exer)
> tbl

Freq None Some
Heavy 7 1 3
Never 87 18 84
Occas 12 3 4
Regul 9 1 7

> chisq.test(tbl, simulate.p.value = TRUE, B=10000)

Pearson's Chi-squared test with simulated p-value
(based on 10000 replicates)

data: tbl
X-squared = 5.4885, df = NA, p-value = 0.4794

What feature of the data is this test ignoring?

Goodness of Fit Tests

The chisq.tes() function also performs goodness of fit tests. These are
goodness of fit tests of a set of probabilities, very related to our tests of
proportions from last week.

For example, suppose we want to test whether a six-sided die is fair. We roll
the die 100 times and record the frequency with which we observe each face.

> die
die
1 2 3 4 5 6
17 14 21 28 14 6
> chisq.test(x=die, p=rep(1/6, 6))

Chi-squared test for given probabilities

data: die
X-squared = 16.52, df = 5, p-value = 0.005506

14



Two Quantitative Variables

Correlation
o It is often the case that two or more quantitative variables are measured
on each unit of observation (such as an individual).

e We are then often interested in characterizing how pairs of variables are
associated or how they vary together.

e A common measure that is used is called “correlation”, which is most well
suited for measuring linear associations

Sample Correlation

Suppose we observe n pairs of data (z1,y1), (z2,%2),. .., (Zn, yn). Their sample
correlation is

Z?:1<xi —Z)(yi — Y)
Vi (@i = T)2 30 (i — §)?
Yoy (@ —T)(yi — )

(n—1)sz8,

where s, and s, are the sample standard deviations of each measured variable.

Ranked-Based Correlation

e There are other ways to measure correlation that are less reliant on linear
trends in covariation and are also more robust to outliers.

e Specifically, one can convert each measured variable to ranks by size (1
for the smallest, n for the largest) and then use a formula for correlation
designed for these ranks.

¢ One popular measure of rank-based correlation is the Spearman correla-
tion.

Population Correlation

Suppose there are two random variables X and Y. Their population correlation
is

E[(X - EX])(Y — E[Y])]
Var(X)Var(Y)

PXY =

15
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Hand Size Vs. Height

> ggplot(data = survey, mapping=aes(x=Wr.Hnd, y=Height)) +
+ geom_point() + geom_vline(xintercept=mean(survey$Wr.Hnd, na.rm=TRUE)) +
+ geom_hline(yintercept=mean(survey$Height, na.rm=TRUE))
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Calculating Correlation

> str(cor)
function (x, y = NULL, use = "everything", method = c("pearson",
"kendall", "spearman"))

>
> cor(survey$Wr.Hnd, survey$Height,
+ use="pairwise.complete.obs")

[1] 0.6009909
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> DF <- survey %>% dplyr::select(Wr.Hnd, Height) %> na.omit()
> sum((DF$Wr.Hnd - mean(DF$Wr.Hnd)) *

+ (DF$Height - mean(DF$Height))) /

+  ((nrow(DF)-1) * sd(DF$Wr.Hnd) * sd(DF$Height))

[1] 0.6009909

Example Correlations

1 0.8 04 0 04 0.8 -1

Image from Wikipedia.

HT of Correlation

> str(cor.test)
function (x, ...)

From the help file:
Usage
cor.test(x, ...)

## Default S3 method:
cor.test(x, y,

alternative = c("two.sided", "less", "greater"),

method = c("pearson", "kendall", "spearman"),

exact = NULL, conf.level = 0.95, continuity = FALSE,
)

## S3 method for class 'formula'
cor.test(formula, data, subset, na.action, ...)

17
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HT of Correlation

> cor.test(x=survey$Wr.Hnd, y=survey$Height)
Pearson's product-moment correlation

data: survey$Wr.Hnd and survey$Height
t = 10.792, df = 206, p-value < 2.2e-16
alternative hypothesis: true correlation is not equal to O
95 percent confidence interval:
0.5063486 0.6813271
sample estimates:
cor
0.6009909

HT By Hand

Compare the following to the above output of cor.test().

> r <- cor(survey$Wr.Hnd, survey$Height,

+ use="pairwise.complete.obs")

> df <- sum(complete.cases(survey[,c("Wr.Hnd", "Height")]))-2
> # dplyr way to get df:

> # df <- (survey >/ select(Wr.Hnd, Height) 7>)
> # na.omit () %4>} nrow())-2

>

> tstat <- r/sqrt((1 - r~2)/df)

> tstat

[1] 10.79234

>

> pvalue <- 2xpt(g=-abs(tstat), df=df)

> pvalue

[1] 8.227549e-22

Hand Sizes

> ggplot(data = survey) +
+ geom_point(aes(x=Wr.Hnd, y=NW.Hnd))

18
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Correlation of Hand Sizes

> cor.test (x=survey$Wr.Hnd, y=survey$NW.Hnd)
Pearson's product-moment correlation

data: survey$Wr.Hnd and survey$NW.Hnd
t = 45.712, df = 234, p-value < 2.2e-16
alternative hypothesis: true correlation is not equal to O
95 percent confidence interval:
0.9336780 0.9597816
sample estimates:
cor
0.9483103
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Davis Data

\"

library("car")
data("Davis", package='"car")

Vv

> htwt <- tbl_df(Davis)

> htwt[12,¢c(2,3)] <- htwt[12,c(3,2)]
> head (htwt)

Source: local data frame [6 x 5]

sex weight height repwt repht
(fctr) (int) (int) (int) (int)
M 7 182 77 180
58 161 51 159
53 161 54 158
68 177 70 175
59 157 59 155
76 170 76 165

o O WN -
=T =Tm

Height and Weight

> ggplot (htwt) +
+ geom_point(aes(x=height, y=weight, color=sex), size=2, alpha=0.5) +
+ scale_color_manual(values=c("red", "blue"))

20
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Correlation Test

> cor.test(x=htwt$height, y=htwt$weight)
Pearson's product-moment correlation

data: htwt$height and htwt$weight
t = 17.04, df = 198, p-value < 2.2e-16
alternative hypothesis: true correlation is not equal to O
95 percent confidence interval:
0.7080838 0.8218898
sample estimates:
cor
0.7710743

Correlation Test with Outlier

Recall we had to fix an error in the data, which we noticed as an outlier in the
scatterplot. Here is the effect of the outlier:

21



> cor.test(x=Davis$height, y=Davis$weight)
Pearson's product-moment correlation

data: Davis$height and Davis$weight
t = 2.7179, df = 198, p-value = 0.007152
alternative hypothesis: true correlation is not equal to O
95 percent confidence interval:
0.05228435 0.31997151
sample estimates:
cor
0.1896496

Correlation Test with Outlier

Let’s use the Spearman rank-based correlation:

> cor.test(x=Davis$height, y=Davis$weight, method="spearman")
Warning in cor.test.default(x = Davis$height, y = Davis$weight,
method = "spearman"): Cannot compute exact p-value with ties

Spearman's rank correlation rho

data: Davis$height and Davis$weight
S = 308750, p-value < 2.2e-16
alternative hypothesis: true rho is not equal to O
sample estimates:
rho
0.7684305

Correlation Among Females

> htwt %>% filter(sex=="F") %>%
+ cor.test(~ height + weight, data = .)

Pearson's product-moment correlation

data: height and weight

t = 6.2801, df = 110, p-value = 6.922e-09

alternative hypothesis: true correlation is not equal to O
95 percent confidence interval:

0.3627531 0.6384268

sample estimates:

22



cor
0.5137293

Correlation Among Males

> htwt %>} filter(sex=="M") %>%
+ cor.test(~ height + weight, data = .)

Pearson's product-moment correlation

data: height and weight
t = 5.9388, df = 86, p-value = 5.922e-08
alternative hypothesis: true correlation is not equal to O
95 percent confidence interval:
0.3718488 0.6727460
sample estimates:
cor
0.5392906

Why are the stratified correlations lower?

Least Squares Linear Regression

Rationale

o It is often the case that we would like to build a model that explains the
variation of one variable in terms of other variables.

o Least squares linear regression is one of the simplest and most useful
modeling systems for doing so.

o It is simple to fit, it satisfies some optimality criteria, and it is straightfor-
ward to check assumptions on the data so that statistical inference can
be performed.

Setup

o Let’s start with least squares linear regression of just two variables.
o Suppose that we have observed n pairs of data (z1, y1), (€2,Y2), - -+, (Tn, Yn)-

o Least squares linear regression models variation of y; in terms of 5y + B1x;
where [y and 51 are chosen to satisfy a least squares optimization.

23



Line that Minimizes the Squared Error

The least squares regression line is formed from the value of 5y and 3y that
minimize:

n

> (i — Bo — Bri)?.

i=1

For a given set of data, there is a unique solution to this minimization as long
as there are at least two unique values among 1, xs, ..., Z,.

Let 30 and BAl be the values that minimize this sum of squares.

Least Squares Solution

These values are:

~ Sy

=T _—

ﬂl Ty PR
Po=9— P

These values have a useful interpretation.

Visualizing Least Squares Line

24
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Example: Height and Weight

> ggplot(data=htwt, mapping=aes(x=height, y=weight)) +
+ geom_point(size=2, alpha=0.5) +
+ geom_smooth(method="1m", se=FALSE, formula=y~x)

25
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Calculate the Line by Hand

> betal <- cor(htwt$height, htwt$weight) *

+ sd(htwt$weight) / sd(htwt$height)

> betal

[1] 1.150092

>

> beta0 <- mean(htwt$weight) - betal * mean(htwt$height)
> betal

[1] -130.9104

>

> yhat <- beta0 + betal * htwt$height

Plot the Line

> df <- data.frame(htwt, yhat=yhat)
> ggplot(data=df) + geom_point(aes(x=height, y=weight), size=2, alpha=0.5) +
+ geom_line(aes(x=height, y=yhat), color="blue", size=1.2)
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Calculate the Line in R
> myfit <- lm(weight ~ height, data=htwt)
> myfit

Call:
Im(formula = weight ~ height, data = htwt)

Coefficients:
(Intercept) height
-130.91 1.15

What’s Next?

e Why minimize the sum of squares?
e What is the output provided by R?

e How do we access and interpret this output from R?
e What assumptions are required to use this machinery?
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e How do we check these assumptions on data?
e How can we build more complex models?

Extras

License

https://github.com/SML201/lectures/blob/master/LICENSE.md

Source Code

https://github.com/SML201/lectures/tree/master /week9

Session Information

> sessionInfo()

R version 3.2.3 (2015-12-10)

Platform: x86_64-apple-darwinl3.4.0 (64-bit)
Running under: 0S X 10.11.3 (E1 Capitan)

locale:
[1] en_US.UTF-8/en_US.UTF-8/en_US.UTF-8/C/en_US.UTF-8/en_US.UTF-8

attached base packages:
[1] stats graphics grDevices utils datasets methods
[7] base

other attached packages:

[1] car_2.1-1 MASS_7.3-45 broom_0.4.0
[4] dplyr_0.4.3 ggplot2_2.1.0 knitr_1.12.3
[7] magrittr_1.5 devtools_1.10.0

loaded via a namespace (and not attached):

[1] Rcpp_0.12.3 nloptr_1.0.4 formatR_1.2.1

[4] plyr_1.8.3 tools_3.2.3 digest_0.6.9

[7] 1me4 1.1-11 evaluate_0.8 memoise_1.0.0

[10] nlme_3.1-125 gtable_0.2.0 lattice_0.20-33
[13] mgecv_1.8-11 Matrix_1.2-3 psych_1.5.8

[16] DBI_0.3.1 yaml_2.1.13 parallel_3.2.3
[19] SparseM_1.7 stringr_1.0.0 MatrixModels_0.4-1
[22] grid_3.2.3 nnet_7.3-12 R6_2.1.2

[25] rmarkdown_0.9.5 minga_1.2.4 reshape2_1.4.1
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[28] tidyr_0.4.1 scales_0.4.0 htmltools_0.3

[31] splines_3.2.3 assertthat_0.1 pbkrtest_0.4-6
[34] mnormt_1.5-3 colorspace_1.2-6 quantreg_5.21
[37] labeling 0.3 stringi_1.0-1 lazyeval_0.1.10

[40] munsell_0.4.3
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